Interleukin-6 induces oxidative stress and endothelial dysfunction by overexpression of the angiotensin II type 1 receptor.
نویسندگان
چکیده
Angiotensin II type 1 (AT1) receptor activation as well as proinflammatory cytokines such as interleukin-6 (IL-6) are involved in the development and progression of atherosclerosis. The detailed underlying mechanisms including interactions between inflammatory agonists and the renin-angiotensin system are poorly understood. Stimulation of cultured rat aortic vascular smooth muscle cells (VSMCs) with IL-6 led to upregulation of AT1 receptor mRNA and protein expression, as assessed by Northern and Western blot experiments. Nuclear run-on and transcription blockade experiments showed that IL-6 increases AT1 receptor mRNA de novo synthesis but not mRNA stability. Preincubation of VSMCs with IL-6 resulted in an enhanced angiotensin II-induced production of reactive oxygen species, as assessed by DCF fluorescence laser microscopy. Treatment of C57BL/6J mice with IL-6 for 18 days increased vascular AT1 receptor expression (real-time RT-PCR) and angiotensin II-induced vasoconstriction, enhanced vascular superoxide production (L-012 chemiluminescence, DHE fluorescence), and impaired endothelium-dependent vasodilatation. These effects were completely omitted in AT1 receptor knockout mice (AT1A-/- mice). Upregulation of vascular AT1 receptor expression in vitro and in vivo is decisively involved in IL-6-induced propagation of oxidative stress and endothelial dysfunction. This interaction of the proinflammatory cytokine IL-6 with the renin-angiotensin system may represent an important pathogenetic mechanism in the atherosclerotic process.
منابع مشابه
Aldosterone Induces Oxidative Stress Via NADPH Oxidase and Downregulates the Endothelial NO Synthesase in Human Endothelial Cells
Aldosterone is traditionally viewed as a hormone regulating electrolyte and blood pressure homeostasis. Recent studies suggest that Aldo can cause microvascular damage, oxidative stress and endothelial dysfunction. However, its exact cellular mechanisms remain obscure. This study was undertaken to examine the effect of Aldo on superoxide production in human umbilical artery endothelial cel...
متن کاملAngiotensin II type 1 receptor antagonism improves hypercholesterolemia-associated endothelial dysfunction.
OBJECTIVE Hypercholesterolemia-induced angiotensin II type 1 (AT1) receptor overexpression is thought to be a key event in the development of endothelial dysfunction. METHODS AND RESULTS The effect of a 6-week treatment with the AT1 receptor antagonist candesartan (16 mg/d) on endothelial function and serum inflammation markers was compared with the effect of treatment with placebo or the cal...
متن کاملCyclooxygenase-1 is involved in endothelial dysfunction of mesenteric small arteries from angiotensin II-infused mice.
Angiotensin II induces endothelial dysfunction by reducing NO availability and increasing reactive oxygen species. We assessed whether cyclooxygenase (COX)-1 or COX-2 participate in the angiotensin II-induced endothelial dysfunction in murine mesenteric small arteries and examined the role of reduced nicotinamide-adenine dinucleotide phosphate-dependent reactive oxygen species production. Mice ...
متن کاملEndothelial dysfunction and oxidative stress during estrogen deficiency in spontaneously hypertensive rats.
BACKGROUND Postmenopausal estrogen deficiency is associated with an increased cardiovascular risk, hypertension, and oxidative stress. Angiotensin type 1 (AT(1)) receptor regulation is involved in the pathogenesis of atherosclerosis. To characterize vascular function, oxidative stress, and AT(1) receptor regulation during estrogen deficiency, ovariectomized spontaneously hypertensive rats (SHR)...
متن کاملFrom Angiotensin II Cyclooxygenase-1 Is Involved in Endothelial Dysfunction of Mesenteric Small Arteries
Angiotensin II induces endothelial dysfunction by reducing NO availability and increasing reactive oxygen species. We assessed whether cyclooxygenase (COX)-1 or COX-2 participate in the angiotensin II–induced endothelial dysfunction in murine mesenteric small arteries and examined the role of reduced nicotinamide-adenine dinucleotide phosphate–dependent reactive oxygen species production. Mice ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Circulation research
دوره 94 4 شماره
صفحات -
تاریخ انتشار 2004